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Abstract

Recent results from flutter experiments of the supercritical airfoil NLR 7301 at flow conditions close to the transonic

dip are presented. The airfoil was mounted with two degrees-of-freedom in an adaptive solid-wall wind tunnel, and

boundary-layer transition was tripped. Flutter boundaries exhibiting a transonic dip were determined and limit-cycle

oscillations (LCOs) were measured. The local energy exchange between the fluid and the structure during LCOs is

examined and leads to the following findings: at supercritical Mach numbers below that of the transonic-dip minimum

the presence of a shock-wave and its dynamics destabilizes the aeroelastic system such that the decreasing branch of the

transonic dip develops. At higher Mach numbers the shock-wave motion has a stabilizing effect such that the flutter

boundary increases to higher flutter-speed indices with increasing Mach number. Amplified oscillations near this branch

of the flutter boundary obtain energy from the flow mainly due to the dynamics of a trailing-edge flow separation. A

slight nonlinear amplitude dependency of the shock motion and a possibly occurring boundary-layer separation cause

the amplitude limitation of the observed LCOs. The impact of the findings on the numerical simulation of these

phenomena is discussed.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The inherently nonlinear transonic flow is assumed to cause two well-known aeroelastic phenomena in the interaction

with a typical transport-aircraft structure (Bendiksen, 1992; Schewe et al., 2003): first, in the ‘‘transonic dip’’ (Tijdeman,

1977), the flutter speed shows a noticeable minimum between the critical Mach number where local supersonic regions

occur in the flowfield and the Mach number where massive flow separation possibly limits the operational flight regime

of an aircraft; secondly, amplitude-limited oscillations of the structure, so-called limit-cycle oscillations (LCOs), may

occur (Schewe and Deyhle, 1996) instead of ‘‘classical’’ flutter where exponentially growing and destructive structural

oscillations occur at flight speeds above the critical flutter speed. However, the impact of the particular nonlinear

aerodynamic mechanisms, such as shock/boundary-layer interaction or flow separation, on the aeroelastic behavior is

not as well understood as the impact of structural nonlinearities, e.g. freeplay (Dowell et al., 2003). The understanding
e front matter r 2006 Elsevier Ltd. All rights reserved.
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and the accurate prediction of this nonlinear aeroelastic behavior is expected to play an increasing role in the

development of modern aircraft and future air vehicles with probably even higher degrees of structural flexibility

than today, e.g. morphing airplanes (Dowell et al., 2003; Schuster et al., 2003). Therefore, in a previous paper, the

authors linked the global aerodynamic force behavior to observed transonic-dip phenomena and LCOs (Dietz et al.,

2004a). In the present paper, the authors’ goal is to provide a more detailed understanding of the local aerodynamic

phenomena that cause both the amplification and the amplitude limitation of aeroelastic oscillations close to the

transonic dip.

The present study reports results from experiments on heave/pitch LCOs of the supercritical airfoil NLR 7301 with

tripped boundary-layer transition at flow conditions close to the transonic dip. Thus, it concentrates on two spatial

dimensions since a heaving and pitching airfoil can be seen as a representative section of a wing exhibiting bending and

torsional oscillations. The measurements were carried out in the adaptive test section of the Transonic Wind Tunnel

Göttingen DNW-TWG. The evaluation of the experimental results contributes to the understanding of both, the

amplification and the amplitude limitation of oscillations of an elastic lifting surface in transonic flow. Hints for an

appropriate aeroelastic modeling of the experimentally observed phenomena close to the transonic dip are derived and

discussed.
2. Recent progresses in understanding transonic aeroelasticity

Here, an analysis of the recent progresses in the literature regarding the physical understanding of the aeroelastic

behavior close to the transonic dip is necessary, in order to understand the approach and the results of the present

paper.

An overview of the substantial progress in modeling and understanding of nonlinear aeroelastic phenomena was

provided by Dowell et al. (2003). A summary of primary aerodynamic and structural dynamic sources which may be

responsible for aeroelastic nonlinearities was presented. In addition to freeplay and geometric structural nonlinearities,

nonlinear aerodynamic shock-wave motion and/or flow separation are expected to cause nonlinear aeroelastic behavior.

The impact of uncertainties in predicting the behavior of a nonlinear aeroelastic system was pointed out: first, in a

subcritical bifurcation situation, two response states of the aeroelastic system are possible at the same control parameter

and were reported by aircraft operators. Thus, gusts or strong control commands may shift the aeroelastic system from

one state without oscillations to another critical state with strong oscillations [so-called ‘‘hard flutter’’/‘‘explosive LCO’’

by Thomas et al. (2004)]. Secondly, two nominally identical aircraft were observed to exhibit different aeroelastic

responses although there are only tiny differences e.g. in their structural dynamics (Chen et al., 1998; Mignolet et al.,

1999). This property is typical nonlinear behavior. According to Schuster et al. (2003) many of today’s problems already

require aeroelastic analyses that consider nonlinear aero- and structural dynamics. Schuster et al. (2003) stated that

future air vehicles will demand aeroelastic and aeroservoelastic methodologies that account for the resulting aeroelastic

nonlinearities and take into account the impact of wing thickness and camber and static aeroelastic deformation

(Schuster et al., 2003). Computational aeroelasticity (CAE) should encompass and continue to be developed on three

levels of complexity: linear methods (e.g. DLM/eigenvalue problems), moderate fidelity methods (e.g. reduced-order

modeling) and high-fidelity methods (e.g. RANS/FEM coupling).

The basis for improving or expanding CAE in order to predict nonlinear aeroelastic phenomena is their physical

understanding. This understanding is necessary to choose the right modeling and to couple the structural and the

aerodynamic models appropriately. Although more accurate and much more efficient theoretical models, e.g. for the

nonlinear aerodynamics, are becoming available (Dowell et al., 2003), new insights in the governing physics of

nonlinear aeroelastic phenomena are required to make effective and efficient use of the available modeling.

The observations of Bendiksen (2001) regarding the shape of transonic flutter boundaries motivated the numerical

studies of Kholodar et al. (2003, 2004a). The behavior of an airfoil mounted with the two degrees-of-freedom (2 dof) in

heave and pitch was investigated with an Euler harmonic-balance (HB) method. The reduced velocity of the flutter

boundary was presented as a function of Mach number and mass ratio. The sensitivity of the flutter boundary

with respect to the structural-dynamic parameters was described and visualized using this three-parameter flutter

surface. The similarity parameters of Bendiksen (1999) for airfoils of different thicknesses were successfully tested

on the basis of the numerical results. The numerical method was validated by comparison with measured flutter

boundaries obtained at the NACA 0012 Benchmark Model of Rivera et al. (1992). For Mach numbers

0:30pMa1p0:82, the numerical and experimental results agreed well. In the range 0:82oMa1o0:88, no experimental

data were published by Rivera et al. (1992) and the HB method revealed no flutter boundary for the considered

values of mass ratio and speed of sound (Kholodar et al., 2004a). At higher Mach numbers, 0:88pMa1p0:95, the
numerical and experimental results disagree. The disagreement was suspected to be caused by viscous effects which
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could not be taken into account by the Euler HB method, although the experiments indicate strong shock-induced

separation at these conditions.

The authors presumed that arranging the steady flowfield appropriately may cause unsteady flow that does not lead

to a pronounced transonic dip (Dietz et al., 2004a). This idea was investigated by Dietz et al. (2004b): a computational

lift-constrained airfoil-shape optimization was conducted with the two objectives to minimize the drag as well as the

upstream propagation time of pressure disturbances in the steady flowfield above the airfoil for a given transonic Mach

number and a given Reynolds number. It was shown that this multi-objective minimization reduced the phase lag of the

lift response to a harmonic pitch motion of the optimized airfoil compared with the initial airfoil. Moreover, the

optimized airfoil had a better steady aerodynamic performance. Flutter calculations based on a transonic doublet-

lattice method (TDLM) by VoX (1985) and Lu and VoX (1993) showed that the flutter boundary of the optimized airfoil

exhibited higher flutter-speed indices compared with the initial airfoil. The optimized airfoil had only 53% thickness of

the initial airfoil. Thus, this flutter-behavior dependency on the airfoil thickness in principal matched the observation of

Kholodar et al. (2004a) while comparing the flutter boundaries of a NACA 0004 with that of a NACA 0012. However,

it was demonstrated that TDLM was not able to capture the increasing branch of the flutter boundary at Mach

numbers higher than that of the transonic-dip minimum. The TDLM method was applied on the basis of steady

solutions of the coupled Euler/boundary-layer equations using MSES by Drela and Giles (1987) and Drela (1990).

Although these steady state solutions included a prediction of the separated boundary-layer on the airfoil, the flutter-

speed indices of the flutter boundary decreased monotonously in the TDLM prediction even at Mach numbers higher

than that of the expected transonic-dip minimum. This paper will discuss this observation based on the experimental

results in Section 4.4.

Kholodar et al. (2004b) studied, in addition to the flutter boundary, also the LCO behavior of the NACA 0012

Benchmark Model of Rivera et al. (1992) with the Euler HB method. The effect of the uncoupled heave to pitch

frequency ratio was investigated at a Mach number where the experiments did not report massive flow separation. For a

given LCO amplitude, the reduced velocities exhibited a minimum near a frequency ratio of one. Below that ratio, an

attractor and supercritical bifurcation behavior was detected, whereas well above a ratio of one a repeller and

subcritical bifurcation behavior was found. It was demonstrated that the LCO behavior is very sensitive to the Mach

number and that the aeroelastic nonlinearity was prominent only in a limited range of transonic Mach numbers.

However, the results did not take into account viscosity, which is likely to play an important role at high Mach numbers

due to shock/boundary-layer interaction and flow separation. Thomas et al. (2004) demonstrated this strong impact of

viscosity on the LCO behavior numerically by results of an HB approach applying a solver of the Euler equations

compared with a solver of the Reynolds-averaged Navier–Stokes equations. The simulations for the NLR 7301 airfoil

were compared with the test case MP77 [Knipfer and Schewe (1999); corrected structural-dynamic parameters in

Schewe et al. (2003)] occurring at a Mach number close to the transonic-dip minimum. The viscous effects led to a

supercritical LCO behavior with respect to reduced velocity while the inviscid model predicts more or less exponentially

growing amplitudes. However, like other computational methods (Weber et al., 2001; Castro et al., 2001; Tang et al.,

2003), this approach also predicted much higher LCO amplitudes than the ones which were experimentally observed.

Castro et al. (2001) took into account the presence of the porous wind-tunnel walls of MP77. It was shown that

modeling the wind-tunnel wall porosity significantly affects the LCO characteristics. These results confirmed the

authors’ former decision to avoid this additional challenge in simulation by providing well-defined boundary conditions

in terms of an adaptive test section (Wedemeyer et al., 1998) for the recent experiments (torsion flutter in Schewe et al.,

2002; Dietz et al., 2004a). Thomas et al. (2003) simulated the torsion flutter in transonic flow observed by Schewe et al.

(2002) in the adaptive test section. A maximum in the magnitude of the computed first harmonic of the pitching

moment for a Mach number of 0.7711 was interpreted as wind-tunnel resonance with a frequency of 70Hz. It was

believed that this ‘‘wind-tunnel resonance condition is responsible for the flutter onset total pressure dip’’ (Thomas et

al., 2003, p. 6). However, the observed phenomenon does not match the lowest wind-tunnel resonance frequency of

106Hz, which is here estimated by the method of VoX (1998), for the same flow conditions. Furthermore, the torsion

flutter was experimentally observed only with boundary-layer transition tripping; without tripping, no flutter case could

be found at this flow conditions (Schewe et al., 2002). Additionally, a frequency of 70Hz matches typical buffet

frequencies observed at NLR 7301 models in the Transonic Wind Tunnel Göttingen DNW-TWG (Schewe et al., 2002).

Thus, Thomas et al. (2003) most likely have identified an aerodynamic instability of the flow around the airfoil instead

of a wind-tunnel resonance.

Similar to Birnbaum (1924), Patil (2003) discusses wing flutter and flapping flight based on the energy transfer

mechanisms between flow and structure that result in drag or propulsion. Three types of modes were identified for an

aeroelastic system: an unstable flutter mode with an increase in drag, a stable mode with an increase in drag, and a

stable flapping-flight mode generating thrust. It was stated that the energy needed to amplify flutter oscillations comes

from the propulsive unit and is transferred via the flow to the structure. Since flutter oscillations induce drag while the



ARTICLE IN PRESS
G. Dietz et al. / Journal of Fluids and Structures 22 (2006) 505–527508
thrust in trimmed flight may be kept constant, the aircraft should be decelerated. The oscillation amplitude of the wing,

and thus its drag, alters with the airspeed reduction such that limit-cycle oscillations may occur even while assuming

linear aero- and structural-dynamics (Patil, 2002).

The authors also investigated the energy exchange between the fluid and the structure, namely while an airfoil

exhibits LCOs in transonic flow (Dietz et al., 2004a). This approach led to insights into the amplification and amplitude

limitation mechanisms based on the behavior of the global aerodynamic loads lift and pitching-moment. In particular,

the experiments on heave/pitch flutter of a supercritical airfoil NLR 7301 in transonic flow led to the following findings:

a very slight nonlinear dependency of the unsteady aerodynamic loads on the amplitude of the airfoil motion was

responsible for the amplitude limitation of the flutter oscillations close to the transonic dip. Due to this slight

nonlinearity, LCOs could be controlled by relatively small forces, but LCO amplitudes also strongly depended on the

damping of the aeroelastic systems. The time lag of the lift response to the airfoil pitch motion has driven the

oscillations and appeared to cause the characteristic shape of the transonic dip. The observations matched those of

Bendiksen (1992) stating that in transonic flow the phase difference between heave and pitch motion tends to adjust

such that single degree-of-freedom (sdof) flutter occurs. Bendiksen (1992) argued that the work during one oscillation

cycle contributed by the lift due to the shock motion is maximized in this case. Bendiksen (2004) performed an analysis

of limit-cycle flutter phenomena, focusing on the identification of amplitude-limiting mechanisms from a global energy-

exchange perspective. Based on theoretical considerations he emphasized that CAE needs to model the energy exchange

between the fluid and the structure correctly and with a sufficient spatial and temporal accuracy in order to predict LCO

amplitudes. Contrarily to above mentioned publications, Bendiksen (2004) simulated in Euler-based calculations, small-

amplitude LCOs which matched the experimental data of MP77 surprisingly well. It was stated that, in the absence of

flow separation, a transition from sinusoidal shock-wave motion (Tijdeman and Seebass, 1980, Type A) to interrupted

shock-wave motion (Type B) appears to cause the amplitude limitation. With this kind of transition from Type A to

Type B shock motion occurring on the suction and the pressure side of an nonsymmetrical airfoil section at different

oscillation amplitudes, Bendiksen (2004) expected two nested LCOs to occur. Nevertheless, he believed that intermittent

trailing-edge boundary-layer separation caused by shock/boundary-layer interaction has a similar effect as that of a

transition from Type A to Type B shock-wave motion.

Motivated by this recent progress, realized by the inspection of the energy transfer (Dietz et al., 2004a; Bendiksen,

2004), and the advances gained by interpreting the local work coefficient in turbomachinery (Grüber and Carstens,

2001), the present paper provides new insights to transonic flutter based on the local energy exchange between the fluid

and the structure.
3. Set-up

Detailed information about the flutter-test set-up and the test procedures can be found in Schewe et al. (2002) and

Dietz et al. (2004a). Only details regarding an improved set-up used in the present investigation and details which are

important in order to understand the reported results are presented here.

3.1. Wind tunnel

The present wind-tunnel investigation was carried out in the Transonic Wind Tunnel Göttingen DNW-TWG

operated by the foundation German–Dutch Wind Tunnels. The DNW-TWG is a continuously working facility with a

1m� 1m adaptive test-section. The stagnation temperature in this wind tunnel is kept constant by a closed-loop

control of a cooler, while Mach number and stagnation pressure may be varied independently. A given inflow Mach

number is also kept constant by a closed-loop control using the measured ratio of the static pressure to the stagnation

pressure in the test-section. The diffuser cross-section downstream of the test-section is adapted such that the inflow

velocity is held constant. Therefore, the observed LCOs cannot be caused by such mechanisms as described by Patil

(2002). The ratio of the wind-tunnel height to the chord of the investigated airfoil model is 3.333. Therefore, the top and

bottom walls were adapted to the stationary flow at the mean angle of attack of the airfoil, where the static aeroelastic

equation is satisfied. The wall interference is minimized by a one-step method of wall adaptation based on a Cauchy

type integral (Wedemeyer et al., 1998). The displacement thickness of the turbulent wind-tunnel wall boundary layer is

predicted by Head’s method (Cebeci and Bradshaw, 1979) and is added to the wall shapes; top and bottom wall

displacement thicknesses are obtained according to the measured pressure gradients at each wall while the gradient is

neglected for the sidewalls (Jacobs, 2002). This adaptation to the mean steady position of the airfoil yields nearly a

minimum residual wall interference for a moderately oscillating airfoil, as shown in pretests (Jacobs, 2002). The lowest



ARTICLE IN PRESS

Fig. 1. Pictures of the improved flutter-test set-up with installed airfoil model mounted in the adaptive test section of the DNW-TWG.

The adaptive test-section is opened.
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value for the wind-tunnel resonance frequency can be estimated using the method of VoX (1998): based on this method,

the ratio of flutter to wind-tunnel resonance frequency is lower than 30%, and the ratio of buffeting to wind-tunnel

resonance frequency is lower than 77% for the reported data.

3.2. Flutter-test set-up

The applied set-up allows free heave and pitch motions of the airfoil model for flutter tests. A theoretical model

representing the structural dynamics of this set-up is described in Section 3.4. The mean angle of attack ā of the

aeroelastic system under airloads depends on the structural-dynamic parameters, the off-wind angle of attack a0 and the

flow parameters. The off-wind angle of attack a0 can only be adjusted with high efforts while the wind tunnel is shut

down.

Contrary to the formerly used flutter-test set-up [cf. Tichy and Henke (1993), Schewe et al. (2002), Dietz et al.

(2004a)], the entire improved flutter-test set-up can be rotated with a2D around the elastic axis of the aeroelastic system

in order to tune the angle of attack to a given value while the wind tunnel is running (see Fig. 1, right). Thus, a target

mean angle of attack ā can be fine-tuned while the static aeroelastic equilibrium is fulfilled. During the present tests, the

angle of the complete set-up with respect to the flow direction was �0:74�pa2Dp0:32�. Of course, the heave direction

of the aeroelastic system with respect to the flow direction changes also with the amount of a2D. But, the error in the

heave-motion data perpendicular to the flow direction is lower than 0.01% and the amount of edgewise motion due to

the nonzero a2D is less than 1.3% compared with the heave amplitude.

In the flutter-test set-up, the airfoil is mounted on each side to a piezoelectric balance of high stiffness (Schewe, 1991)

in order to measure the steady and unsteady lift, drag and pitching moment. Two laser triangulators on each side of the

wind tunnel measure the instantaneous heave and pitch of the model. A control system may introduce forces in heave

direction which are also measured piezoelectrically. A digital signal-processor device derives the heave velocity from the

laser-triangulator signals such that a voltage proportional to this velocity can be passed into one electrodynamical

exciter on each side. Small heave motions of the airfoil can then either be amplified or damped, by applying the inverted

signal. Tests revealed that in open-loop state this flutter control system can be seen as nonintrusive. The set-up, with the

airfoil model mounted in the adaptive test section of the DNW-TWG, is shown in Fig. 1.

3.3. Airfoil model

The airfoil model was shaped as the supercritical NLR 7301 airfoil with the contour given by Zwaan (1979), except

that this geometry was cut off at x=c ¼ 1. Thus, the trailing edge of the model is blunt, with approximately 0.1% chord.

In the present investigation the chord meets the leading and trailing edge of the model so that the given angle-of-attack

a differs from the NLR results by a ¼ aNLR � 0:183�. The model is made of a carbon-fiber composite structure having

a chord of c� ¼ 0:3m and a span of b� ¼ 1m. It is lightweight and very stiff so that the natural frequencies of the
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flutter-test set-up and the flutter frequencies are well below the first deformation natural frequency of the airfoil model.

Accordingly, it is appropriate to treat the airfoil model as rigid.

In order to investigate the unsteady flow around the oscillating airfoil, the model is equipped with 64 miniature

differential pressure transducers (Kulite XCQ-093-5psiD) measuring both steady and unsteady pressure differences

with respect to the pressure in the DNW-TWG plenum. These sensors are arranged beneath the model surface and the

pressure taps are located in a zig-zag pattern of �0:5% span around the middle section at 50% span. In each of three

laterally distributed sections of the airfoil model, two accelerometers (PCB 352C22) are mounted in the model, one near

the leading edge, the other close to the trailing edge. The measured data were recorded by the AMIS II data acquisition

system, which is capable of sampling the signals of 360 channels simultaneously at up to 44 kHz per channel and with 16

bit resolution.

Laminar-turbulent boundary-layer transition was tripped at 7% chord on the suction and 14% chord on the pressure

side by zig-zag tape with a height of 0.0467% chord. The effectiveness of the transition tripping was checked by infrared

imaging in former experiments with the same set-up and similar flow conditions. The tripping was applied in the

attempt of obtaining a better comparison with numerical simulations, since the accurate prediction of the transition

region is still an unsolved problem, in particular for unsteady flows.

3.4. Structural-dynamic model of the flutter-test set-up

The heave and pitch motions of the airfoil in the flutter-test set-up are modeled by a 2 dof system as shown in Fig. 2.

The corresponding equations of motion can be written in nondimensional form as

v21M
q2uðtÞ
qt2
þ 2v1D

quðtÞ
qt
þ KuðtÞ ¼

2

p
v21
m

fðtÞ, (1)

where

M ¼
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�xa r2a

" #
; D ¼

dhoh=oa 0

0 dar2a

" #
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2 0

0 r2a
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3
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fðtÞ ¼
clðtÞ
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" #
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hðtÞ

aðtÞ � a0

" #
.

Eq. (1) describes the motion of the airfoil, its nondimensional heave hðtÞ ¼ h�ðtÞ=c� at the elastic axis, as well as the

difference between its angle of attack aðtÞ and its off-wind value a0, which depend on the nondimensional time
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Fig. 2. Schematic of the structural model.
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t ¼ t�v�1=c�. With the dimensional quantities of chord length c�, mass m�, static mass moment S�a, mass moment of

inertia I�a, spring constants K�a=h, and damping coefficients D�a=h, as well as the free-stream speed v�1 and density r�1, the
structural-dynamic parameters are made nondimensional as follows:

elastic axis to 1
4
-chord point distance: x0 ¼ x�0=c� ¼ 0:0,

elastic axis to center of mass distance: xa ¼ S�a=m�c� ¼ 0:0429,

radius of gyration about the elastic axis: ra ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�a=m�c�2

q
¼ 0:2102,

Lehr’ s pitch-damping coefficient: da ¼ D�a=2
ffiffiffiffiffiffiffiffiffiffiffi
K�aI�a

p
¼ 0:13%,

Lehr’ s heave-damping coefficient: dh ¼ D�h=2
ffiffiffiffiffiffiffiffiffiffiffiffi
K�hm�

p
¼ 0:38%,

uncoupled natural frequency ratio: oh=oa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�h=m�

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K�a=I�a

q
¼ 0:6886. ð2Þ

The aerodynamic lift L�ðtÞ and pitching moment M�ðtÞ that act on the airfoil with span b� through the 1
4
-chord point

can be nondimensionalized as

lift coefficient: clðtÞ ¼ L�ðtÞ

�
1
2
r�1v�21c�b�

� �
,

moment coefficient: cmðtÞ ¼M�ðtÞ

�
1
2
r�1v�21c�2b�

� �
. ð3Þ

The reciprocal of the reduced pitching natural frequency ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K�a=I�a

p
c�=v�1 ¼ 70:35m/s=v�1 can be interpreted as a

nondimensional free-stream speed v1 ¼ 1=ka and is called the reduced speed. The reduced frequency k ¼ o�c�=v�1 is

made nondimensional with the full chord length c�. The mass ratio m ¼ ðm�=ðp=4c�2b�ÞÞ=r�1 ¼ 429:22 kg/m3=r�1
describes the ratio of the structural inertial forces to the aerodynamic loads, whereas the flutter-speed index fi ¼

2v1=
ffiffiffi
m
p

characterizes the ratio of the aerodynamic loads to the elastic forces.

The above structural-dynamic parameters of the improved flutter-test set-up were obtained at a0 ¼ 0� and a2D ¼ 0�.

The chord length, mass and torsional-spring constant, were measured directly. The mass moment of inertia, the static

mass moment and the bending-spring constant were measured and then corrected by the results of a ground vibration

test (GVT). The correction procedure minimizes the discrepancies between the theoretically obtained eigenfrequencies

and maximizes the collinearity of the eigenvectors to the values that were measured. The relative difference between the

eigenfrequencies of the structural model without aerodynamic loads to those of the GVT is smaller than 0.2%, the

collinearity of the eigenvectors is greater than 99.4%. The relative error of the measured eigenfrequencies is very small

whereas the damping constants may be obtained from the GVT with a relative error of Oð20%Þ.
4. Results and discussion

The presented data were measured in the flutter-test set-up while the airfoil model was allowed to oscillate freely in

the flow. Flutter boundaries were determined at three different angles of attack. Two LCO cases close to the transonic

dip were selected in order to discuss the amplification and the amplitude limitation of the oscillations. One LCO case

was measured at a supercritical Mach number, lower than that of the transonic-dip minimum; the other at a Mach

number close to the buffeting boundary. These two new LCO cases differ from the authors’ previous LCO test cases

(Dietz et al., 2004a): they were obtained at other structural-dynamic parameters and the model here was equipped with

pressure transducers. The time-dependent pressure data combined with the motion data of the model allowed an

examination of the local energy exchange between the fluid and the structure.

4.1. Transonic dip and limit-cycle oscillation cases

Fig. 3 shows the measured flutter and buffeting boundaries for three different angles of attack in the flutter-speed

index fi=Mach-number ðMa1Þ plane. The corresponding data are reported in Table 1. At stable conditions below the

flutter boundary, the aeroelastic system was excited by the flutter-control system such that damping coefficients could

be determined from the decaying oscillation amplitudes in the recorded time traces. Analogously, at unstable conditions

above the flutter boundary the negative damping coefficients, i.e. the amplification rates of the observed oscillations,

were determined from the time traces. The square symbols show data from test series at a fixed stagnation pressure

where the Mach number was varied from stable conditions until amplified oscillations of the airfoil occurred. The zero
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Table 1

Measured flutter and buffeting boundaries at Su0 ¼ 110:4K=T�0 ¼ 0:362� 1:7%

ā ¼ 0:34� � 0:06� ā ¼ 0:83� � 0:03� ā ¼ 1:47� � 0:03�

Ma1 Re1

106
fi m Ma1 Re1

106
fi m Ma1 Re1

106
fi m

Extrapolated flutter boundary

0.501 4.00 0.291 302.0 0.501 4.05 0.281 295.7 0.501 3.88 0.280 316.1

0.551 3.20 0.262 419.9 0.551 3.08 0.257 436.3 0.550 3.21 0.261 414.8

Interpolated flutter boundary

0.552 3.06 0.256 440.2 0.551 3.04 0.255 442.3 0.549 3.05 0.254 439.5

0.587 2.58 0.240 557.5 0.583 2.55 0.239 559.3 0.651 2.11 0.224 761.7

0.623 2.01 0.217 761.0 0.637 2.05 0.221 762.6 0.693 1.45 0.192 1178.7

0.669 1.43 0.187 1154.2 0.679 1.43 0.189 1170.9 0.741 1.50 0.200 1223.8

0.678 1.08 0.163 1559.7 0.699 1.07 0.167 1599.3 0.752 1.88 0.226 987.8

0.773 1.16 0.178 1661.6 0.748 1.14 0.175 1624.6

0.783 1.45 0.200 1346.0 0.763 1.14 0.196 1625.1

Buffeting boundary

0.795 1.31 0.191 1524.5 0.781 1.43 0.199 1358.2 0.760 1.53 0.204 1230.4

s

s

s
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Fig. 3. Comparison of measured flutter and buffeting boundaries at Su0 ¼ 110:4K=T�0 ¼ 0:362� 1:7% with a flutter-stability limit

analyzed from theoretically obtained derivatives for a flat plate. Simulations predict trailing-edge separation with respect to increasing

Mach number at conditions marked by an ‘‘s’’ (cf. discussion of Fig. 8).
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passing of the damping coefficients being interpolated over Mach number illustrates the flow conditions of the flutter

boundary. The circle symbols show data which are extrapolated from tests at stable conditions of an identical Mach

number but at different stagnation pressures. Here the damping coefficients were extrapolated over the flutter-speed
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index such that the flutter-speed index with zero damping could be estimated. The data obtained by both methods at

Ma1 � 0:55 in Fig. 3 agree well. The flutter-boundary data obtained for approximately the same incidence are

connected by Akima (1970) splines. Unfortunately, the lower limit of the stagnation pressure p�0430kPa achievable at

DNW-TWG and the limited available time for the entire test campaign did not allow a precise identification of the

transonic-dip minimum. Accordingly, these spline curves must not be over-interpreted in terms of the precise transonic-

dip minimum locations. Nevertheless, the variation of the angle of attack for a single measured flutter boundary could

be reduced from �0:13� (Dietz et al., 2004a) down to�0:03� by use of the improved flutter-test set-up. Furthermore, the

test time to obtain one flutter boundary was reduced significantly. However, the variation in Mach number and

stagnation pressure corresponds to a variation of the Reynolds number since the stagnation temperature and thus the

Sutherland constant Su0 ¼ 110:4K=T�0 in the DNW-TWG wind tunnel was held constant by a closed-loop controlled

cooler. This variation of the Reynolds number is documented in Table 1.

At high Mach numbers, the combined heave/pitch oscillations with a typical reduced frequency of k � 0:2 changed to

pitch dominated oscillations at k � 0:5 which match neither structural eigenfrequencies nor wind-tunnel resonance

frequencies. In former tests with the NLR 7301, buffet with k ¼ 0:56 was identified at Ma1 ¼ 0:75 and a fixed incidence

of a ¼ 2:40�. Thus, in the present tests buffeting was assumed to occur at these flow conditions which are also shown in

Fig. 3 and listed in Table 1. With increasing angle of attack the Mach number of the buffeting boundary decreases. This

behavior is typical for the buffet onset (Stanewsky, 1990), since the Mach number at which flow separation, and its

unsteady interaction with strong shock waves above the suction side of an airfoil, is expected to occur decreases with

increasing incidence.

Fig. 3 also shows a flutter-stability limit of an infinitesimal thin flat plate in inviscid but compressible flow [cf. Dietz

et al. (2004a) using the method of Carstens (1973)], which is elastically mounted with the structural dynamics according

to Eqs. (1) and (2). At low Mach numbers, the measured data at the NLR 7301 and the theoretical results for the flat

plate agreed well. At Mach numbers Ma140:66, the flutter boundaries start to disagree significantly. At Mach

numbers lower than that of the transonic-dip minimum, the measured flutter-speed indices of the flutter boundary were

lower than that of the flat plate. At Mach numbers close to the buffeting boundary, the measured aeroelastic system

gets even more stable than that of the flat plate indicated by higher measured flutter-speed indices.

Several conditions in the unstable region of the transonic dip above the flutter boundary were found where LCOs

occurred. Qualitatively and quantitatively, the manifestations of these LCOs agree to the observations by Schewe et al.

(2003) and Dietz et al. (2004a). Two LCO cases called TL3 and TL4 were selected for further investigations. Both cases

were found to be representative for the aeroelastic behavior on each branch of the transonic dip in the present tests. The

flow and the structural parameters of these LCO cases are reported in Table 2. Furthermore, the location of these cases

in the flutter-speed index/Mach number plane is shown in Fig. 3. Both cases were measured very close to, but above the

flutter boundary in the unstable region of the flutter-speed-index/Mach-number plane. TL3 occurred at a supercritical

Mach number below that of the transonic-dip minimum, while TL4 was close to the buffeting boundary. TL3 represents

a situation where the flutter-speed index is lower than that of the flat plate. The aeroelastic system at TL4 was more

stable than the elastically mounted flat plate. In both cases a phase difference of fa � fh � 180� was observed between

the pitch and the heave motion. Therefore, these LCOs can also be interpreted as a sdof motion as observed and

discussed by the authors for the formerly obtained test cases TL1 and TL2 (Dietz et al., 2004a).

Figs. 4 and 5 show on the left side the time traces of the pitch aðtÞ and the heave hðtÞ motion as they were measured

for TL3 and TL4 by the laser triangulators. First, the aeroelastic system was artificially stabilized by the flutter control
Table 2

Limit-cycle oscillation cases TL3 and TL4

Flow and structural parameters Measured LCO properties

TL3 TL4 TL3 TL4

Ma1 0.677 0.751 ā 1.051 1.461

Re1=10
6 1.43 1.88 c̄l 0.348 0.454

Su0 0.364 0.360 c̄m �0.059 �0.067

m 1164.5 989.0 ĥ 0.27% 0.19%

v1 3.21 3.56 â 0.171 0.101

a0 1:51� � 0:03� 2:18� � 0:04� ĥ=â 0.89 1.08

fa � fh 1761 1751

k 0.220 0.203
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Fig. 4. Limit-cycle oscillation case TL3. Left: time traces of the pitch a and the heave h motion as well as the exciter-force coefficient

ceðtÞ ¼ F�e ðtÞ=ð
1
2
r�1v�2c�b�Þ. Right: corresponding phase-space representation. Ma1 ¼ 0:677, Re1 ¼ 1:43� 106, Su0 ¼ 0:364,

m ¼ 1164:5, v1 ¼ 3:21, a0 ¼ 1:51� � 0:03�.
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system. In both cases, this system was switched off in open-loop state shortly before the depicted time traces started.

Slowly, the pitch and heave amplitudes grew to their stable LCO value. Obviously, the LCO observed in TL4 does not

exhibit such a constant amplitude compared with TL3. In both cases, during the recorded time traces, the flutter-control

system was used to increase the oscillation amplitudes in order to ensure that the observed LCOs were stable. The forces

which were applied by the electrodynamic exciters in the heave direction are shown in the lower part of Figs. 4 and 5.

They are presented as exciter-force coefficients, nondimensionalized in the same manner as the lift coefficient. At the

end of the depicted time traces, the same flutter-control system was used to damp out the oscillations. Like in former

tests (Dietz et al., 2004a), the exciter-force coefficients needed to control the state of the aeroelastic system were

remarkably small compared with a typical lift coefficient of 0.4. On the lower right of Figs. 4 and 5, the exciter-force

coefficient is plotted against the instantaneous heave velocity. This demonstrates that, during the excitation of the

oscillations, the flutter-control system induces forces which are in phase with the heave velocity. For the damping, a

180� phase shift is applied.
4.2. Steady flow properties close to the limit-cycle oscillation cases

As shown in the foregoing, the oscillations of the aeroelastic system in TL3 and TL4 could be damped out by use of

the flutter-control system. For those sections of the time traces where the system was nearly at rest, steady-state pressure

distributions were determined by time averaging the measured pressure data. These measured pressure distributions of

TL3 and TL4 are presented in Fig. 6. They are shown together with pressure and skin-friction distributions that are

obtained by integrating the coupled Euler- and boundary-layer equations by using the code MSES of Drela and Giles

(1987), assuming free-flight farfield boundary conditions. For both simulated cases, Mach Ma1 and Reynolds number
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Fig. 6. Measured steady-state pressure distributions cpðxÞ of TL3 and TL4 compared with pressure and skin-friction cf ðxÞ distributions

simulated with the Drela and Giles (1987) Euler/boundary-layer code MSES. Left: Ma1 ¼ 0:677, Re1 ¼ 1:43� 106, Su0 ¼ 0:364,
a ¼ 1:05�. Right: Ma1 ¼ 0:751, Re1 ¼ 1:88� 106, Su0 ¼ 0:360, a ¼ 1:46�.

Fig. 5. Limit-cycle oscillation case TL4. Left: time traces of the pitch a and the heave h motion as well as the exciter-force coefficient

ceðtÞ. Right: corresponding phase-space representation. Ma1 ¼ 0:751, Re1 ¼ 1:88� 106, Su0 ¼ 0:360, m ¼ 989:0, v1 ¼ 3:56,
a0 ¼ 2:18� � 0:04�.
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Re1 as well as angle of attack a are taken as measured without any corrections. The measured and the simulated

pressure distribution match fairly well. Also the pressure recovery at the trailing edge is predicted satisfyingly in both

cases. This agreement of the pressure distributions indicates again the effectiveness of the wind-tunnel wall adaptation

(Dietz et al., 2004a). For TL3 the entire flow seems to be attached except for a very slight separation near the trailing

edge on the suction side, as indicated by the left skin-friction distribution in Fig. 6. The skin-friction distribution in the

right of Fig. 6 corresponding to TL4 shows that a trailing-edge separation occurs at x ¼ 83% and that the suction-side

boundary-layer flow is close to a shock-induced separation. So, as also observed by Schewe et al. (2003), a type B

separation seems to be present according to the classification of Pearcy et al. (1968), which is expected to be rather

sensitive to the Reynolds number and the transition location (Tijdeman, 1977). This should be considered in possible

numerical simulations.

The unsteady aerodynamics is assumed to determine strongly the aeroelastic behavior of the system under

consideration. In order to understand the unsteady aerodynamics for TL3 and TL4, it is helpful to have a closer look at

the quasi-steady separation and shock-location dependency on the angle of attack for a constant Mach number. Fig. 7

shows on the left side a strong rise in the negative pressure coefficient �cpðx ¼ 0:95Þ measured near the trailing edge at

flow conditions close to that of the case TL4. This indicates a strong thickening of the boundary layer at the trailing

edge (Stanewsky, 1990). This indication, together with the skin-friction distribution of Fig. 6, confirms that trailing-

edge separation occurs for TL4 in the experiment. Due to this separation, the airfoil is effectively decambered and thus

the shock moves upstream with increasing angle of attack (Stanewsky, 1990). Fig. 7 compares on the right side the

measured shock locations with respect to the angle of attack. The shock locations were estimated by interpolating the

measured pressure distributions over the airfoil-surface arc length using Akima (1970) splines and detecting the location

where the interpolation crosses the critical c�pðMa1Þ value. The shock locations in Fig. 7 demonstrate that for the case

TL3 the shock wave moves aft with increasing incidence, and vice versa for the case TL4.

The dependency of the shock-wave location and the trailing-edge boundary-layer separation on the Mach number is

shown in Fig. 8. The data are obtained by using the Drela and Giles (1987) Euler/boundary-layer code MSES. The flow

conditions were interpolated from those of the measured flutter-stability limits which are listed in Table 1. A random

examination confirmed that the measured and simulated steady-state pressure distributions match fairly well as

demonstrated in Fig. 6. The shock locations were estimated by searching the location where the interpolated pressure

distributions cross the critical c�pðMa1Þ value. The boundary-layer separation points were detected from the
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skin-friction distributions by searching for cf ðxÞ ¼ 0. Fig. 8 demonstrates, as expected, that the occurrence of a trailing-

edge separation impacts the shock location. For all three angles of attack, the Mach number which corresponds to the

beginning of a trailing-edge separation is marked by an ‘‘s’’ in Fig. 8 as well as Fig. 3. The beginning of a trailing-edge

separation with respect to Mach number seems to correspond to an inflection point in the flutter-stability limit. This

might be an indicator of the relevance of flow separation to the shape of the transonic dip and will be discussed in more

detail in Section 4.3.

Keeping these steady flow properties in mind, the amplification and the amplitude limitation of the LCO cases TL3

and TL4 is discussed in the following by analyzing the local energy exchange between the fluid and the structure.

4.3. Local energy exchange in limit-cycle oscillations

The energy exchange between the fluid and the structure was previously examined by the authors in order to link the

global aerodynamic force behavior to the observed LCOs (Dietz et al., 2004a). The sum of the kinetic energy in the

heave and the pitch motion Ekin together with the potential energy in the springs Epot must be equal to the constant

initial energy E0 ¼ E�0=ð
1
2
r�1v�21c�2b�Þ in the structural-dynamic system plus the sum of work SW . Energy is dissipated

due to the structural damping with the power Pv ¼ P�v=ð
1
2
r�1v�31c�b�Þ. The global aerodynamic loads lift and the pitching

moment perform the energy exchange between flow and structure at Pl þ Pm per unit time. In addition to this, the

flutter-control system puts the power (Pe40) in or takes the power (Peo0) out of the structural-dynamic system.

Accordingly,

E0 ¼ Ekin þ Epot �W ¼ Ekin þ Epot �

Z
ðPv þ Pl þ Pm þ PeÞdt (4)

is an integral of the equation of motion (1) and thus describes the energy balance for the 2 dof system around its steady

position ū. It was shown that the structural-dynamic parameters of the test set-up, the time traces of the motion, and the

forces could be measured with sufficient accuracy in order to evaluate the energy exchange between the fluid and the

structure (Dietz et al., 2004a).

In the present paper the local energy exchange between the fluid and the structure is examined on basis of the time-

dependent pressure distribution cp measured in the mid-section of the airfoil model. The skin-friction contribution to
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the energy exchange during LCOs is assumed to be small compared with the energy exchange based on the pressure

distribution and thus neglected. The heave hðtÞ and the pitch aðtÞ motion of the model in the mid-section is evaluated by

combining the two corresponding accelerometer signals integrated twice over time. Since the model is assumed to be

rigid, the kinematic velocity due to the heave and the pitch motion of the model surface with its coordinates xm ¼

ðxm; zmÞ
T in the model-fixed coordinate system is

vðxm; tÞ ¼
qhðtÞ

qt

� sin aðtÞ

cos aðtÞ

" #
þ
qaðtÞ
qt

zm

ðx0 þ 0:25Þ � xm

" #
. (5)

The local work coefficient cW describes the local work per area which is performed by the flow on a surface element

dAm of the airfoil with the surface-normal vector nm during one oscillation period T, i.e.

cW ðxm; tÞ ¼
1

dAm

Z tþT=2

t�T=2
�ðcpðxm; tÞ � c̄pðxmÞÞnm dAm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

unsteady pressure force vector

vðxm; tÞdt. (6)

Thus, a positive local work coefficient cW40 means that the moving structure locally receives energy from the flow and

vice versa. If the flow in the wind tunnel would be ideally 2-D, its integral about the airfoil surface along the arc-line

elements ds should be equal to the work performed by the global aerodynamic loads lift and pitching moment

1

c

I
cW ðxm; tÞds¼

!
Z tþT=2

t�T=2
ðPlðtÞ þ PmðtÞÞdt. (7)

A comparison of the left-hand (lhs) and the right-hand side (rhs) terms of Eq. (7), applying the wind-tunnel data,

shows that the magnitude of the energy exchange between the fluid and the structure in the midsection (lhs term) is

nearly the same but generally slightly higher compared with the global energy exchange (rhs term). One reason for the

difference may be the neglect of the skin-friction contribution. However, most likely the flow in the present wind-tunnel

experiments is close to but not ideally 2-D. Since the global energy evaluation, based on the balance measurement,

averages over the entire span, the flow near the wind-tunnel sidewalls is also taken into account. Thus, the magnitude of

the work performed during one oscillation cycle near the sidewalls is probably lower than that in the midsection due to

the wall interference. However, the evaluation of the energy exchange using the local work coefficient from the

measured data seems to exhibit a sufficient accuracy and provides some enlightenment regarding the local aerodynamics

causing the amplification and the amplitude limitation of LCOs close to the transonic dip. Therefore, time traces of the

local work coefficient for TL3 and TL4 are compared.

Fig. 9 shows the local work coefficient cW against the airfoil-surface arc lengths and allows one to distinguish between

the suction and the pressure side. An arc length of zero represents the leading edge, while a positive arc length represents

the suction side and a negative one the pressure side, respectively. The local work coefficient in Fig. 9 is normalized by

the instantaneous heave amplitude squared ĥ2. The heave rather than the pitch is chosen here since, with the heave

motion, the lift feeds the main part of the energy from the flow into the structure. However, normalizing with the pitch

amplitude squared â2 would yield the same qualitative results. The normalization is done for two reasons: first, to

compare the TL3 and TL4 cases, which exhibit different heave amplitudes (cf. Table 2); second, to compare and time-

average two different sections of each time trace. In one section, the aeroelastic system exhibits growing amplitudes

toward the stable LCO (beginning of the time traces in Figs. 4 and 5). In the second section, the amplitudes shrink down

to the stable LCO immediately after the oscillations were artificially increased by the flutter-control system (middle of

the time traces in Figs. 4 and 5). The normalization of the local work coefficient by the instantaneous heave amplitude

squared ĥ2 demonstrates the nonlinear discrepancy between both sections of the time traces more clearly.

The left side of Fig. 9 demonstrates that the shock motion feeds the main part of the energy in the oscillations of TL3.

Moreover, the amplitude dependency of the shock motion is responsible for the amplitude limitation of the observed

LCOs. That is to say, the peak of the local work coefficient near the time-averaged shock location is smaller when the

amplitudes shrink to the LCO amplitude. Although it is somewhat wider, the integral of the local work coefficient about

the airfoil surface (cf. Eq. (7)) is slightly lower compared with the section of the time trace where the amplitudes grow to

the LCO amplitude. This slightly lower aerodynamic work contribution is enough that the structural damping can

cause the oscillation amplitude to decay back to the stable LCO amplitude where the aerodynamic work contribution

and the structural damping losses are in balance.

The situation is quite different for TL4 which is shown on the right side of Fig. 9. The shock motion in TL4 is

responsible for taking energy out of the aeroelastic system. The higher the oscillation amplitudes the higher the relative

energy extraction due to the shock motion. The amplification is contributed to mainly by the trailing-edge flow

separation on the airfoil suction side. Although the energy contribution due to the trailing-edge separation increases
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when the amplitudes shrink down to the LCO value, this contribution cannot compensate the over-proportional losses

due to the shock motion. Thus, the aerodynamic work contribution is lower than in the case of growing amplitudes.

This small difference determines whether or not the losses due to structural damping are over-compensated and

oscillations are amplified.

Hence, slight nonlinear amplitude dependencies of the shock-motion characteristics and possibly occurring flow

separation cause the amplitude limitation of the observed LCOs. Since these amplitude dependencies will cause also a

slight nonlinear oscillation-amplitude dependency of the lift and the pitching moment, this observation agrees well with

the previous findings of the authors’ (Dietz et al., 2004a). It is also obvious that the ‘‘stability’’ of the presented stable

LCOs is rather weak. There are only small differences between the energy exchange while the amplitudes grow toward

the LCO or while the aeroelastic system falls back to the LCO. This makes clear why LCOs can be controlled by

relatively small forces [cf. end of Section 4.1 and Dietz et al. (2004a)].

The impact of the shock-wave motion for TL3, which is located at a Mach number below that of the transonic-dip

minimum, is different from TL4 which is close to the buffeting boundary. The shock-wave motion causes a pressure

distribution on the oscillating airfoil which leads to an incremental lift. For TL3 this incremental lift exhibits such a

phase shift from the heave motion of the airfoil that aerodynamic work is contributed due to the shock motion and

oscillations are amplified. This observation matches the results of Bendiksen (1992). Moreover, this destabilizing effect

of shock waves decreases with increasing oscillation amplitude, which causes the amplitude limitation at TL3. However,

close to the buffeting boundary at a Mach number higher than that of the transonic-dip minimum, the shock wave

exhibits a stabilizing effect in TL4. The amplification for TL4 is mainly related to the trailing-edge flow separation on

the suction side.

The shock-wave motion around its time averaged position for both LCO cases TL3 and TL4 is presented in Fig. 10.

Again, for each case the two different sections of the time traces, i.e. growing and shrinking to the stable LCO, are

shown separately. Both plot coordinates are normalized by the heave amplitude ĥ in order to demonstrate the nonlinear

dependency of the shock motion on the oscillation amplitude. The shock locations were estimated by interpolating the

measured pressure distributions of every sample in the time trace over the airfoil-surface arc length using Akima (1970)

splines and detecting the location where this interpolation crosses the critical c�pðMa1Þ value. The plots of Fig. 10 should

not be over-interpreted, since the spatial resolution of the pressure taps particularly near the shock location of TL3 is

limited (cf. Fig. 6, left).

Nevertheless, there is a clear difference between the shock motion for TL3 and for TL4: the transfer function

estimates a phase difference at the flutter frequency between the shock xs and the heave h motion which amounts
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fxsl
� fh � �225

� for TL3. Contrarily, the phase difference is fxsl
� fh � �120

� for TL4. This shift of 105� in the

phase differences causes the sign change of the mean slope of the trajectories shown in Fig. 10. It explains that the shock

motion causes a work contribution in the one case and energy extraction in the other case. This principal behavior could

be expected for moderate motion frequencies from the steady shock-wave behavior shown on the right side of Fig. 7,

since for TL4 an inverse shock motion was identified.

Regarding the amplitude limitation mechanism, only the right side of Fig. 10 provides obvious information. The

amount of energy exchanged between fluid and structure is expected to be maximal when the shock wave, and thus the

resulting lift contribution, is extreme at the maximum or minimum heave velocity. For TL4 on the right side of Fig. 10,

the downstream shock location tends to be minimal, close to the maximum heave velocity in the upstroke, heave motion

of the airfoil. The shock position is here even more upstream when the amplitudes shrink from a higher level down to

the stable LCO. Thus, during the upstroke, power is given locally from the structure to the flow since the lift of the

airfoil is close to its minimum while the airfoil heave velocity is at its maximum. For the downstroke motion,

no obvious difference between the two sections of the TL4 time trace can be identified. The left side of Fig. 10

only demonstrates that there is a clear amplitude dependency of the shock-motion characteristics. However, the

downstream shock location and thus the lift contribution of the shock wave is maximal during the upstroke, and

is minimal during the downstroke such that the shock motion causes the transfer of power from the fluid to the

structure (cf. Fig. 9).

Fig. 9 demonstrated for TL4 that the amplification is mainly caused by the trailing-edge boundary-layer separation

on the suction side of the airfoil. The Euler/boundary-layer simulation presented in Fig. 6 predicts this trailing-edge

separation to occur downstream of x ¼ 83%. Therefore, the transfer function of the pressure tap data at x ¼ 80% to

the pressure coefficients cp downstream of the separation location is estimated. The amplitude ratio jcp=cp x¼0:8j (left)

and the time delay ðfcp x¼0:8
� fcp

Þ=k (right) of this transfer function estimate, for the fundamental motion frequency k,

is plotted against x in Fig. 11. These data are plotted for TL3 and TL4 as well as two cases of forced pitch oscillations at

different frequencies, which were measured at a higher Mach number but at a lower angle of attack compared with TL4,

such that a boundary-layer separation occurs near the same location of TL4. Both cases of forced pitch oscillations

were measured in a previous test campaign. The dash-dotted line of the negative time delay for case TL3, which is

expected to exhibit no strong trailing-edge separation, indicates that pressure waves travel and transport information

from the trailing-edge upstream. In all other cases, the time delay shown in the right side of Fig. 11 is positive. In both

cases of forced pitch oscillations, the time delay is nearly identical although the reduced frequency differs from k � 0:10
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to k � 0:35. An attached boundary layer is governed by the outer inviscid flowfield. Downstream of the so-called

Goldstein singularity at the point of separation, the region of reverse flow grows and the separation strongly determines

the outer flowfield. A boundary-layer separation starts at zero in terms of wall distance. If the separation point moves

along the airfoil surface in unsteady flow, the region of reverse flow will most likely develop downstream with a speed

between zero and the boundary-layer-edge speed. In all three cases with flow separation, the average flow speed above

the boundary-layer edge is about v ¼ 71%v1. The time delay assuming pure downstream convection with this

boundary-layer-edge speed is also shown in Fig. 11. This time delay amounts about 10% of that which is found for the

time delay ðfcp x¼0:8
� fcp

Þ=k in separated flow.
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It should be noted that in the left side of Fig. 11 the amplitude ratios for the cases with separated flow

amount approximately one. The behavior observed here might motivate a simple boundary-layer separation model

which could be implemented in unsteady aerodynamic simulation methods like TDLM by VoX (1985) or Lu and

VoX (1993).

The observations of the present investigation are concluded in the principle drawings of Fig. 12. The upper part of

Fig. 12 shows the situation at a supercritical Mach number which is lower than that of the transonic-dip minimum. The

observed Sdof flutter mode of the 2dof aeroelastic system exhibits a virtual center of rotation upstream of the airfoil at

ĥ=â [cf. Dietz et al. (2004a)]. The drawings show from the left to the right: the bottom dead center, the up-stroke, the top

dead center, and the downstroke during one oscillation cycle. The thin solid lines above the airfoil indicate the

boundary-layer thickness. The thin dashed lines mark the sonic boundary. A time-averaged shock-wave location is

indicated by a short thin dotted line which is drawn perpendicular to the airfoil chord line. In the upper part of Fig. 12,

the shock wave reaches its maximum downstream position during the upstroke. Thus, the lift reaches its temporal

maximum and the airfoil is accelerated toward its top dead center. During the downstroke, the situation is opposite. A

situation at a supercritical Mach number, which is higher than that of the transonic-dip minimum and close to the

buffeting boundary, is depicted in the lower part of Fig. 12. During the upstroke the shock wave reaches its maximum

upstream position caused by flow separation. Therefore the shock-wave motion acts to stabilize against the oscillation.

But, the boundary layer on the suction side of the airfoil dynamically separates, which leads to an increase of the

downstream contribution of the lift such that it drives the oscillation (cf. positive local work coefficient near the trailing

edge of the airfoil suction side for TL4 in Fig. 9). Later in the oscillation cycle, the flow re-attaches again and the shock

wave moves downstream.

It is to be expected that a transitional situation between those alternative situations occurs. In the transitional

situation the local power exchange around the shock position is close to zero. Oscillations could still be amplified, but

they would obtain their energy from the flow mainly due to the dynamics of trailing-edge flow separation. In three cases,

the shock wave may not contribute to the power exchange between fluid and structure. In the first, the shock wave

moves in phase with the heave motion and thus out of phase with the heave velocity. In the second, the shock sticks on

its steady state position, and in the third, a shock-free condition is reached. In any case, boundary-layer separation most

likely is involved in order to provoke this shock-motion behavior at transonic speeds and/or in order to feed the energy

into the observed oscillations. A further increase in Mach number should result in the above-described stabilizing effect

of the shock-wave motion such that the flutter-speed index of the flutter boundary can increase with Mach number.

Therefore, this transitional situation is expected to correspond to an inflection point in the flutter boundary. An

example of an LCO in this transitional situation is the test case MP77 described by Schewe et al. (2003). MP77 is

measured on the decreasing branch of the flutter boundary close to the transonic-dip minimum. Indeed, the shock wave

nearly sticks on its position during the LCO, which is indicated to be related to slight flow separation (Schewe et al.,

2003, p. 17).

Flow separation on supercritical airfoils, as here for the NLR 7301, is usually of type B according to the classification

of Pearcy et al. (1968). Furthermore, it is very sensitive to the Reynolds number and to the boundary-layer transition

location (Tijdeman, 1977). This fact, combined with the just described amplification mechanisms of the aeroelastic

system close to the transonic-dip minimum, might help to understand the observation of Schewe et al. (2002, Fig. 3.2)

that the transition location can affect the Mach number and the depth of the transonic-dip minimum significantly.

In conclusion, flow separation and its interaction with the shock wave most likely cause the increasing branch of the

flutter boundary, such that a transonic-dip minimum occurs. Therefore, the transonic-dip minimum is observed to

occur close to the lift-divergence Mach number (Schewe et al., 2003).
4.4. Impact on the numerical prediction of the transonic dip and LCOs

The present investigation confirms that the aeroelasticity close to the transonic dip is strongly determined by the

transonic flowfield. In particular, the steady transonic flowfield on the airfoil with its supersonic regions, shock waves,

and possible boundary-layer separation governs the unsteady airloads in case of airfoil oscillations and thus the

observed aeroelastic behavior. In this manner the transonic flow has a strong nonlinear impact on the transonic

aeroelasticity [cf. Tijdeman (1977), p. 19]. Nevertheless, the present data indicate that the linearization of the unsteady

flow response on the airfoil oscillation is suitable for very small oscillations, e.g. â in the order Oð0:05�Þ. However, the

observed LCOs demonstrate that the unsteady flow depends nonlinearly on the oscillation amplitudes, at least for

higher oscillation amplitudes. Consequently, the unsteady transonic flow must be treated as nonlinear for high

oscillation amplitudes although this nonlinearity is shown here to be weak. This means that the prediction of the flutter-

stability boundary exhibiting a transonic dip requires accounting for the nonlinear steady transonic flowfield but might
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use a linearized model for the unsteady airloads. However, the prediction of LCOs should, of course, not be possible

using a conventional linearized model.

The impact of the above presented results on the expected prediction capabilities of numerical CAE methods to

predict the aeroelastic behavior near the transonic dip is sketched in Fig. 13. In addition to linear or nonlinear methods,

three basic types of methods are distinguished here.
A.
1

equ
Methods which in principle assume potential flow about infinitesimal thin lifting surfaces. Thus, these methods

account for neither viscous effects nor the impact of the steady transonic flowfield with respect to thickness, camber

or incidence of the wing. The most prominent example of such a method is the doublet-lattice method (DLM)

(Albano and Rodden, 1969) which is designed for high subsonic but subcritical flow.
B.
 Methods based on the assumptions of the Euler- or potential-equations which themselves also neglect viscous

effects. Nevertheless, these methods account for the impact of the steady transonic flowfield on the unsteady flow

which is due to wing thickness, camber and/or incidence. Cost-efficient methods of this category are, e.g., the

transonic equivalent strip (TES) method (Liu et al., 1988) or the transonic doublet-lattice method (TDLM) (VoX,

1985; Lu and VoX, 1993). High-fidelity methods of this type are Euler methods, e.g., used by Kholodar et al. (2003,

2004a, b). These methods are valid only for attached flow.
C.
 Methods that also take into account viscous/inviscid interaction. Potential- or Euler-equation based methods

strongly coupled with a boundary-layer simulation1 or Navier–Stokes-equation based methods are typical examples

of this category. Such methods were used, e.g., by Weber et al. (2001), Castro et al. (2001), Tang et al. (2003),

Thomas et al. (2003), Geissler (2003), VoX and Hippe (2006).
Methods of category A may lead to nonconservative results in the transonic region like sketched in Fig. 13 (cf. also

flat-plate stability limit in Fig. 3). This is caused by the fact that the disturbance propagation in the mean transonic

flowfield is strongly determined by the supersonic regions on the wing. The time lag of the unsteady flow response to the

motion is often increased compared with the infinitesimal-thin-airfoil solution such that a shock wave exhibits a

destabilizing effect. Therefore, methods of category B are able to capture the decreasing branch of the transonic dip at

Mach numbers below that of the transonic-dip minimum [e.g. Euler-based results in Kholodar et al. (2004a) or TDLM-

based results in Dietz et al. (2004b)]. However, even the use of a steady flow prediction including flow separation as base

flow for a e.g. TDLM prediction will not enable one to predict the increasing branch of the transonic dip correctly

(Dietz et al., 2004b). However, methods of category B which are not linearized, e.g. full Euler methods, should also be

able to simulate LCOs near this branch in cases where only the shock-wave dynamics and not a viscous/inviscid
Such simulations involving large trailing-edge separation often match fairly well experimental data, although the boundary-layer

ations are restricted to flows with limited separation and weak wall-normal pressure gradients.
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interaction cause the amplitude limitation (Bendiksen, 2004). Of course, methods of categories A or B will yield results

also at high Mach numbers. Moreover, an increase of flutter-indices at higher Mach numbers might be observed, e.g. if

a shock wave reaches the trailing edge of a wing. Nevertheless, from a technical point of view these predictions might be

seen as artifacts in the sense that they may not represent the physics which occur with the real transport aircraft being

operated at high but finite Reynolds numbers. Only the methods of category C are expected to predict the transonic-dip

minimum and the increasing branch of the flutter boundary at higher Mach numbers as well as the buffeting boundary.

These aeroelastic phenomena are determined by more or less strong viscous/inviscid interaction and separation which

need to be modeled appropriately. Therefore, most of the LCO manifestations, as well, will demand a method of type C,

which is not linearized, to be predicted satisfyingly.

The presented results regarding the aeroelastic self-excitation mechanisms in transonic flow, together with former

observations (Dietz et al., 2004b), indicate the following: the disturbance propagation in the upstream direction above

the airfoil suction side obviously strongly determines the time lag of the aerodynamic response to the wing motion.

Therefore, the disturbance propagation above the shock wave needs to be simulated appropriately. Unfortunately,

typical modern grid adaptation techniques might coarsen the grid in this region, since no strong gradients of the flow

variables are generally present there. In our opinion, in addition to the shock wave and the boundary layer, this region

needs to be spatially resolved such that the disturbance propagation is predicted with sufficient accuracy in order to

capture the flutter boundary correctly.

The present investigation shows that the differences between the energy exchange while the amplitudes grow toward

the LCO, or while the aeroelastic system falls back to the LCO, are small. Thus, if a CAE code is not able to model the

energy exchange correctly with a sufficient accuracy, LCOs may not be detected or predicted with an unphysical

amplitude. So, the present results confirm conclusion 2 of Bendiksen (2004).

Schuster et al. (2003) ask for a continuation of development of CAE methods on three levels of complexity.

According to our knowledge, linear methods with the lowest complexity are actually only located in the categories A

and B. Thus, they cannot predict the flutter or buffeting boundary at Mach numbers higher than that of the transonic-

dip minimum. The discussion related to Fig. 11 might motivate a simple boundary-layer separation model which could

be implemented in unsteady aerodynamic simulation methods like TDLM by VoX (1985); Lu and VoX (1993). In this

way, a linearized cost-efficient method of category B might be extended to C such that it is able to predict the shape of

the transonic dip.
5. Concluding remarks

Results from recent experiments on heave/pitch flutter of the supercritical airfoil NLR 7301 with tripped laminar-

turbulent transition at transonic flow conditions have been reported. The tests were conducted in the Transonic Wind

Tunnel Göttingen DNW-TWG using an adaptive-wall test section and a new flutter-test set-up. Flutter boundaries

exhibiting a transonic dip have been measured for three angles of attack. Limit-cycle oscillations (LCOs) were identified

close to the transonic dip. Two LCO cases were selected for further investigation. One LCO case was measured at a

supercritical Mach number lower than that of the transonic dip, and another was obtained at a Mach number close to

the buffeting boundary. Both cases are representative of the aeroelastic behavior on the increasing and decreasing

branch of the transonic dip in the present tests. The local energy exchange between the fluid and the structure was

examined from pressure distributions for those cases.

The most significant results of the present investigation can be summarized as follows.
(i)
 At supercritical Mach numbers below that of the transonic-dip minimum the presence of a shock-wave and its

dynamics destabilizes the aeroelastic system such that the decreasing branch of the transonic dip develops.
(ii)
 At higher Mach numbers the shock-wave motion has a stabilizing effect such that the flutter boundary increases to

higher flutter-speed indices with increasing Mach number. Self-excited oscillations near this branch of the flutter

boundary obtain their energy from the fluid, mainly due to the dynamics of trailing-edge flow separation.
(iii)
 A slight nonlinear amplitude dependency of the shock-motion characteristics and possibly occurring boundary-

layer separation cause the amplitude limitation of the observed LCOs.
The present results are obtained at mass ratios m in the order of Oð1000Þ which are high compared with real transport-

aircraft configurations. Furthermore, the tests cover only a very limited range of structural-dynamic parameters.

Therefore, it is not claimed that the results are generally transferable to a real transport aircraft. However, in our

opinion the presented results are representative for the aeroelastic behavior close to the transonic dip according to our
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experience (Schewe et al., 2002, 2003; Dietz et al., 2003, 2004a), since primarily the aerodynamics determines the

aeroelastic behavior at these conditions. Please note that the aerodynamics are even more dominant compared with the

structural dynamics for a real aircraft than in our experiments, since the ratio of aerodynamic work to total energy

scales with 1=m [cf. Eq. (10) in Dietz et al. (2004a)]. However, the present results indicate the following consequences for

the aeroelastic behavior of transport aircraft operated at high but finite Reynolds numbers.
(a)
 Methods like pure DLM would likely be unable to predict a transonic dip.
(b)
 Methods like TES, TDLM, pure potential- and Euler-equation based methods could predict the decreasing branch

of the transonic dip.
(c)
 Only methods which account for viscous/inviscid interaction including flow separation are expected to predict the

increasing branch of the transonic dip and thus the transonic-dip minimum correctly.
(d)
 The results indicate that the ‘‘stability’’ of stable LCOs is rather weak: there are only small differences between the

energy exchange while the amplitudes grow toward an LCO or while the aeroelastic system falls back to an LCO.

This confirms the authors’ opinion (Dietz et al., 2004a) that LCOs are only marginally usable as a fall-back position

while using an active damping system in order to extend the operational flight regime of an aircraft.
(e)
 Subcritical bifurcations as described by Dowell et al. (2003, Scenario 1) were again identified in the present

investigation. This nonlinear aeroelastic behavior is technically important since traditional flutter-stability analysis

only investigates the response of the aeroelastic system to infinitesimal small disturbances. However, gusts or strong

control commands may push the aeroelastic system from one state without oscillations to another safety-critical

state with strong oscillations, which could not be detected by the traditional aeroelastic analysis. Therefore, a

strategy for a safe but time-efficient aeroelastic analysis is needed that includes looking for subcritical bifurcations.

However, an appropriate aeroelastic modeling of this phenomenon requires accounting for the impact of the steady,

relatively strong, nonlinear transonic flowfield on the unsteady, relatively weak, nonlinearairloads.
The present results relate the local aerodynamics to the observed amplification and amplitude limitation of

aeroelastic oscillations close to the transonic dip. Based on this physical understanding, we intend to improve the

numerical prediction capabilities of the observed phenomena, in particular regarding the transonic dip and subcritical

bifurcations. Furthermore, we intend to derive measures aiming to reduce the collapse of the flutter boundary at the

transonic dip. These measures could be useful to improve the performance and to ensure the safe operation of future

transport aircraft.
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